III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 STRUCTURAL ANALYSIS - II
 (CIVIL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions

All questions carry equal marks

1. A three hinged parabolic arch has a span of 22 m with central rise of 4 m . It is loaded with a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ on the left 8 m length from the left support. Calculate,
a) Direction and magnitude of reaction at the hinge.
b) The bending moment, normal thrust and radial shear at 4 m and 16 m from the left support. Draw bending moment diagram.
2. A uniformly distributed load of $23 \mathrm{kN} / \mathrm{m}$ covers a 8 m length of the span of a two-hinged parabolic arch as shown in Fig.1. The moment of inertia of the arch section varies as the secant of the slope of the arch. The span and rise are 25 m and 4 m respectively. Draw the bending moment diagram and determine the position of maximum bending moment.
3. Analyze the frame shown in Fig. 2 by Cantilever method. Draw the bending moment diagram and sketch elastic curve. Cross-sectional area of all columns is equal.
[16]

4. Analyze the rigid frame shown in Fig. 3 by slope-deflection method. Draw bending moment diagram and hence sketch the elastic curve.

Fig. 3.
5. A frame $A B C D$ shown in Fig. 4 is hinged at A and the end D is fixed, and the joints A and C are rigid. The column CD is subjected to a horizontal loading of $35 \mathrm{kN} / \mathrm{m}$. A concentrated load of 75 kN acts on BC at 1 m from B. Analyze the frame using Moment distribution method and hence sketch the elastic curve.

Fig 4.
6. A three span continuous beam ABCD has hinged support at A and roller supports at B, C and D. The span $A B$ is subjected to a uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ while the spans BC and CD are subjected to uniformly distributed loads of $50 \mathrm{kN} / \mathrm{m}$ and $15 \mathrm{kN} / \mathrm{m}$ respectively. The continuous beam $A B C D$ has constant flexural rigidity. Sketch shear force and bending moment diagrams marking the location and magnitude of maximum bending moments and points of contra-flexure. Also draw elastic curve for the continuous beam. Use Kani’s method.
7. Analyze the continuous beam shown in Fig.5, using flexibility method if the download settlement of supports B and C in km units are 2700/EI and 1200/EI respectively. Draw the bending moment and shear force diagrams. EI is constant.

Fig. 5.
8. Analyze the continuous beam shown in Fig. 6 by stiffness method. Draw bending moment diagram and elastic curve.

Fig. 6.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 STRUCTURAL ANALYSIS - II (CIVIL ENGINEERING)

Time: 3hours
Max.Marks:80

Answer any FIVE questions

All questions carry equal marks

1. Analyze the frame shown in Fig. 1 by Portal method. Draw the bending moment diagram and sketch elastic curve. Cross-sectional area of all columns is equal.

Fig. 1.
2. A two-hinged parabolic arch of span 50 m and central rise of 12 m is loaded over left half of the span with uniformly distributed load of intensity $22 \mathrm{kN} / \mathrm{m}$ and a point load of 70 kN at 16 m from right support. The moment of inertia of the arch varies as the secant of the slope of the arch axis. Neglecting rib shortening effect, determine the following:
a) The horizontal thrust at the supports.
b) Maximum sagging and hogging bending moment values.
c) Radial shear and normal thrust in the arch section situated horizontally at 20 m from the left support.
3. A portal frame $A B C D$ is fixed at A and D and has rigid joints at B and C. The column AB is 5 m long and the column CD is 4 m long. The horizontal beam BC is loaded with uniformly distributed load of intensity of $55 \mathrm{kN} / \mathrm{m}$. Moment of inertia of the columns AB and CD is 2I and 1.5 I respectively. Moment of inertia of beam BC is I. Draw bending moment diagram and hence sketch the elastic curve. Use slope-deflection method.[16]
4. Analyze the frame shown in Fig. 2 by Moment distribution method. Draw the bending moment diagram and hence sketch elastic curve.

Fig 2.
5. Analyze the portal frame shown in Fig.3, by Kani’s rotations contribution method. Draw the bending moment diagram. Sketch the elastic curve.

Fig 3.
6. Analyze the continuous beam shown in Fig.4, using flexibility method if the downward settlement of supports B and C in km units are 3300/Ei and 2100/EI respectively. Draw the bending moment and shear force diagrams. EI is constant.

Fig 4.
7. Analyze the continuous beam shown in Fig. 5 by stiffness method. Draw bending moment diagram and elastic curve.

8. A three hinged parabolic arch has a span of 22 m with central rise of 4 m . It is loaded with a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ on the left 8 m length from the left support. Calculate
a) Direction and magnitude of reaction at the hinge.
b) The bending moment, normal thrust and radial shear at 4 m and 16 m from the left support. Draw bending moment diagram.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
STRUCTURAL ANALYSIS - II
(CIVIL ENGINEERING)
Time: 3hours
Max.Marks:80
Answer any FIVE questions
All questions carry equal marks

1. A portal frame $A B C D$ is fixed at A and D and has rigid joints at B and C. The column AB is 3.5 m long and the column CD is 2.5 m long. The horizontal beam BC is loaded with uniformly distributed load of intensity of 65 kNm . Moment of inertia of the columns AB and CD is 2 I and 1.5 I respectively. Moment of inertia of beam BC is I. Draw bending moment diagram and hence sketch the elastic curve. Use slope-deflection method.[16]
2. A two-hinged parabolic arch of span 60 m and central rise of 15 m is loaded over left half of the span with uniformly distributed load of intensity $25 \mathrm{kN} / \mathrm{m}$ anda point load of 90 kN at 18 m from right support. The moment of inertia of the arch varies as the secant of the slope of the arch axis. Neglecting rib shortening effect, determine the following:
a) The horizontal thrust at the supports.
b) Maximum sagging and hogging bending moment values.
c) Radial shear and normal thrust in the arch section situated horizontally at 22 m from the left support.
3. Analyze the frame shown in Fig. 1 by Portal method. Draw the bending moment diagram and hence sketch elastic curve. Cross-sectional area of all columns is equal.

Fig. 1.
4. A three hinged symmetric circular arch has a span of 28 m with central rise of 5 m . Determine the bending moment, normal thrust and radial shear at 7 m from left support, if the arch is subjected to a uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ over left half portion and a concentrated load of 65 kN at 20 m from the left support. Draw bending moment diagram.
5. Analyze the frame shown in Fig. 2 by Moment distribution method. Draw the bending moment diagram and hence sketch elastic curve.

Fig 2.
6. Analyze the portal frame shown in Fig. 3 by Kani’s rotations contribution method. Draw the bending moment diagram. Sketch the elastic curve.

Fig. 3.
7. Analyze the continuous beam shown in Fig.4, using flexibility method if the downward settlement of supports B and C in km units are 1800/EI and 700/EI respectively. Draw the bending moment and shear force diagrams. EI is constant.

Fig 4.
8. Analyze the continuous beam shown in Fig. 5 by stiffness method. Draw bending moment diagram and elastic curve.

Fig. 5.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 STRUCTURAL ANALYSIS - II
 (CIVIL ENGINEERING)

Time: 3hours
Max.Marks:80
Answer any FIVE questions
All questions carry equal marks

1. A two span continuous beam ABC is fixed at A and C . It is continuous over the simple support B in between A and C. Span $A B$ is 5 m . While span BC is 6 m . It is subjected to a concentrated load of 60 kN at 3 m from the fixed support A , and the span BC is subjected to a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$. The ratio of flexural rigidity of span BC to span $A B$ is 1.5 . Sketch shear force and bending moment diagrams marking the location and magnitude of maximum bending moment and points of contra-flexure. Also draw elastic curve for the continuous beam. Use Kani’s method.
2. A two-hinged parabolic arch of span 26 m and central rise of 3.5 m is uniformly loaded over left half of the span with $25 \mathrm{kN} / \mathrm{m}$ and a concentrated load of 65 kN at the crown.
3. Analyse the frame shown in Fig. 1 by Cantilever method. Draw the bending moment diagram and sketch elastic curve-sectional area of all columns is equal.

Fig. 1.
4. Analyse the rigid frame shown in Fig. 2 by slope-deflection method. Draw bending moment diagram and hence sketch the elastic curve.

Fig. 2
5. A frame $A B C D$ shown in Fig. 3 is hinged at A and the end D is fixed, and the joints B and C are rigid. The column CD is subjected to a horizontal loading of $25 \mathrm{kN} / \mathrm{m}$. A concentrated load of 65 kN acts on BC at 1 m from B. Analyse the frame using Moment distribution method and hence sketch the elastic curve.
[16]

Fig. 3.
6. A three-hinged parabolic arch has a span of 28 m with central rise of 5 m . Determine the bending moment, normal thrust and radial shear at 7 m from left support, if the arch is subjected to a uniformly distributed load of $25 \mathrm{kN} / \mathrm{m}$ over left half portion and a concentrated load of 65 kN at 20 m from the support.
7. Analyze the continuous beam shown in Fig.4, using flexibility method if the downward settlement of supports B and C in km units are 2000/EI and 1000/Ei respectively. Draw the bending moment and shear force diagrams. EI is constant.
[16]

Fig . 4.
8. Analyze the continuous beam shown in Fig. 5 by stiffness method. Draw bending moment diagram and elastic curve.
[16]

Fig. 5.
--00Ooo--

